Commit eda33cae authored by AlexStocks's avatar AlexStocks

Rmv: deadlock;

Mod: add license
parent 00ef87ac
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
# Online deadlock detection in go (golang). [![Try it online](https://img.shields.io/badge/try%20it-online-blue.svg)](https://wandbox.org/permlink/hJc6QCZowxbNm9WW) [![Docs](https://godoc.org/github.com/sasha-s/go-deadlock?status.svg)](https://godoc.org/github.com/sasha-s/go-deadlock) [![Build Status](https://travis-ci.org/sasha-s/go-deadlock.svg?branch=master)](https://travis-ci.org/sasha-s/go-deadlock) [![codecov](https://codecov.io/gh/sasha-s/go-deadlock/branch/master/graph/badge.svg)](https://codecov.io/gh/sasha-s/go-deadlock) [![version](https://badge.fury.io/gh/sasha-s%2Fgo-deadlock.svg)](https://github.com/sasha-s/go-deadlock/releases) [![Go Report Card](https://goreportcard.com/badge/github.com/sasha-s/go-deadlock)](https://goreportcard.com/report/github.com/sasha-s/go-deadlock) [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
## Why
Deadlocks happen and are painful to debug.
## What
go-deadlock provides (RW)Mutex drop-in replacements for sync.(RW)Mutex.
It would not work if you create a spaghetti of channels.
Mutexes only.
## Installation
```sh
go get github.com/sasha-s/go-deadlock/...
```
## Usage
```go
import "github.com/sasha-s/go-deadlock"
var mu deadlock.Mutex
// Use normally, it works exactly like sync.Mutex does.
mu.Lock()
defer mu.Unlock()
// Or
var rw deadlock.RWMutex
rw.RLock()
defer rw.RUnlock()
```
### Deadlocks
One of the most common sources of deadlocks is inconsistent lock ordering:
say, you have two mutexes A and B, and in some goroutines you have
```go
A.Lock() // defer A.Unlock() or similar.
...
B.Lock() // defer B.Unlock() or similar.
```
And in another goroutine the order of locks is reversed:
```go
B.Lock() // defer B.Unlock() or similar.
...
A.Lock() // defer A.Unlock() or similar.
```
Another common sources of deadlocs is duplicate take a lock in a goroutine:
```
A.Rlock() or lock()
A.lock() or A.RLock()
```
This does not guarantee a deadlock (maybe the goroutines above can never be running at the same time), but it usually a design flaw at least.
go-deadlock can detect such cases (unless you cross goroutine boundary - say lock A, then spawn a goroutine, block until it is singals, and lock B inside of the goroutine), even if the deadlock itself happens very infrequently and is painful to reproduce!
Each time go-deadlock sees a lock attempt for lock B, it records the order A before B, for each lock that is currently being held in the same goroutine, and it prints (and exits the program by default) when it sees the locking order being violated.
In addition, if it sees that we are waiting on a lock for a long time (opts.DeadlockTimeout, 30 seconds by default), it reports a potential deadlock, also printing the stacktrace for a goroutine that is currently holding the lock we are desperately trying to grab.
## Sample output
#### Inconsistent lock ordering:
```
POTENTIAL DEADLOCK: Inconsistent locking. saw this ordering in one goroutine:
happened before
inmem.go:623 bttest.(*server).ReadModifyWriteRow { r.mu.Lock() } <<<<<
inmem_test.go:118 bttest.TestConcurrentMutationsReadModifyAndGC.func4 { _, _ = s.ReadModifyWriteRow(ctx, rmw()) }
happened after
inmem.go:629 bttest.(*server).ReadModifyWriteRow { tbl.mu.RLock() } <<<<<
inmem_test.go:118 bttest.TestConcurrentMutationsReadModifyAndGC.func4 { _, _ = s.ReadModifyWriteRow(ctx, rmw()) }
in another goroutine: happened before
inmem.go:799 bttest.(*table).gc { t.mu.RLock() } <<<<<
inmem_test.go:125 bttest.TestConcurrentMutationsReadModifyAndGC.func5 { tbl.gc() }
happend after
inmem.go:814 bttest.(*table).gc { r.mu.Lock() } <<<<<
inmem_test.go:125 bttest.TestConcurrentMutationsReadModifyAndGC.func5 { tbl.gc() }
```
#### Waiting for a lock for a long time:
```
POTENTIAL DEADLOCK:
Previous place where the lock was grabbed
goroutine 240 lock 0xc820160440
inmem.go:799 bttest.(*table).gc { t.mu.RLock() } <<<<<
inmem_test.go:125 bttest.TestConcurrentMutationsReadModifyAndGC.func5 { tbl.gc() }
Have been trying to lock it again for more than 40ms
goroutine 68 lock 0xc820160440
inmem.go:785 bttest.(*table).mutableRow { t.mu.Lock() } <<<<<
inmem.go:428 bttest.(*server).MutateRow { r := tbl.mutableRow(string(req.RowKey)) }
inmem_test.go:111 bttest.TestConcurrentMutationsReadModifyAndGC.func3 { s.MutateRow(ctx, req) }
Here is what goroutine 240 doing now
goroutine 240 [select]:
github.com/sasha-s/go-deadlock.lock(0xc82028ca10, 0x5189e0, 0xc82013a9b0)
/Users/sasha/go/src/github.com/sasha-s/go-deadlock/deadlock.go:163 +0x1640
github.com/sasha-s/go-deadlock.(*Mutex).Lock(0xc82013a9b0)
/Users/sasha/go/src/github.com/sasha-s/go-deadlock/deadlock.go:54 +0x86
google.golang.org/cloud/bigtable/bttest.(*table).gc(0xc820160440)
/Users/sasha/go/src/google.golang.org/cloud/bigtable/bttest/inmem.go:814 +0x28d
google.golang.org/cloud/bigtable/bttest.TestConcurrentMutationsReadModifyAndGC.func5(0xc82015c760, 0xc820160440) /Users/sasha/go/src/google.golang.org/cloud/bigtable/bttest/inmem_test.go:125 +0x48
created by google.golang.org/cloud/bigtable/bttest.TestConcurrentMutationsReadModifyAndGC
/Users/sasha/go/src/google.golang.org/cloud/bigtable/bttest/inmem_test.go:126 +0xb6f
```
## Used in
[cockroachdb: Potential deadlock between Gossip.SetStorage and Node.gossipStores](https://github.com/cockroachdb/cockroach/issues/7972)
[bigtable/bttest: A race between GC and row mutations](https://code-review.googlesource.com#/c/5301/)
## Need a mutex that works with net.context?
I have [one](https://github.com/sasha-s/go-csync).
## Grabbing an RLock twice from the same goroutine
This is, surprisingly, not a good idea!
From [RWMutex](https://golang.org/pkg/sync/#RWMutex) docs:
>If a goroutine holds a RWMutex for reading and another goroutine might call Lock, no goroutine should expect to be able to acquire a read lock until the initial read lock is released. In particular, this prohibits recursive read locking. This is to ensure that the lock eventually becomes available; a blocked Lock call excludes new readers from acquiring the lock.
The following code will deadlock &mdash; [run the example on playground](https://play.golang.org/p/AkL-W63nq5f) or [try it online with go-deadlock on wandbox](https://wandbox.org/permlink/JwnL0GMySBju4SII):
```go
package main
import (
"fmt"
"sync"
)
func main() {
var mu sync.RWMutex
chrlockTwice := make(chan struct{}) // Used to control rlockTwice
rlockTwice := func() {
mu.RLock()
fmt.Println("first Rlock succeeded")
<-chrlockTwice
<-chrlockTwice
fmt.Println("trying to Rlock again")
mu.RLock()
fmt.Println("second Rlock succeeded")
mu.RUnlock()
mu.RUnlock()
}
chLock := make(chan struct{}) // Used to contol lock
lock := func() {
<-chLock
fmt.Println("about to Lock")
mu.Lock()
fmt.Println("Lock succeeded")
mu.Unlock()
<-chLock
}
control := func() {
chrlockTwice <- struct{}{}
chLock <- struct{}{}
close(chrlockTwice)
close(chLock)
}
go control()
go lock()
rlockTwice()
}
```
package gxsync
// ref: github.com/sasha-s/go-deadlock
import (
"bufio"
"bytes"
"fmt"
"io"
"os"
"sync"
"time"
"github.com/petermattis/goid"
)
// Opts control how deadlock detection behaves.
// Options are supposed to be set once at a startup (say, when parsing flags).
var Opts = struct {
// Mutex/RWMutex would work exactly as their sync counterparts
// -- almost no runtime penalty, no deadlock detection if Disable == true.
Disable bool
// Would disable lock order based deadlock detection if DisableLockOrderDetection == true.
DisableLockOrderDetection bool
// Waiting for a lock for longer than DeadlockTimeout is considered a deadlock.
// Ignored is DeadlockTimeout <= 0.
DeadlockTimeout time.Duration
// OnPotentialDeadlock is called each time a potential deadlock is detected -- either based on
// lock order or on lock wait time.
OnPotentialDeadlock func()
// Will keep MaxMapSize lock pairs (happens before // happens after) in the map.
// The map resets once the threshold is reached.
MaxMapSize int
// Will dump stacktraces of all goroutines when inconsistent locking is detected.
PrintAllCurrentGoroutines bool
mu *sync.Mutex // Protects the LogBuf.
// Will print deadlock info to log buffer.
LogBuf io.Writer
}{
DeadlockTimeout: time.Second * 30,
OnPotentialDeadlock: func() {
os.Exit(2)
},
MaxMapSize: 1024 * 64,
mu: &sync.Mutex{},
LogBuf: os.Stderr,
}
// Cond is sync.Cond wrapper
type Cond struct {
sync.Cond
}
// Locker is sync.Locker wrapper
type Locker struct {
sync.Locker
}
// Once is sync.Once wrapper
type Once struct {
sync.Once
}
// Pool is sync.Poll wrapper
type Pool struct {
sync.Pool
}
// WaitGroup is sync.WaitGroup wrapper
type WaitGroup struct {
sync.WaitGroup
}
// A Mutex is a drop-in replacement for sync.Mutex.
// Performs deadlock detection unless disabled in Opts.
type Mutex struct {
mu sync.Mutex
}
// Lock locks the mutex.
// If the lock is already in use, the calling goroutine
// blocks until the mutex is available.
//
// Unless deadlock detection is disabled, logs potential deadlocks to Opts.LogBuf,
// calling Opts.OnPotentialDeadlock on each occasion.
func (m *Mutex) Lock() {
lock(m.mu.Lock, m)
}
// Unlock unlocks the mutex.
// It is a run-time error if m is not locked on entry to Unlock.
//
// A locked Mutex is not associated with a particular goroutine.
// It is allowed for one goroutine to lock a Mutex and then
// arrange for another goroutine to unlock it.
func (m *Mutex) Unlock() {
m.mu.Unlock()
if !Opts.Disable {
postUnlock(m)
}
}
// An RWMutex is a drop-in replacement for sync.RWMutex.
// Performs deadlock detection unless disabled in Opts.
type RWMutex struct {
mu sync.RWMutex
}
// Lock locks rw for writing.
// If the lock is already locked for reading or writing,
// Lock blocks until the lock is available.
// To ensure that the lock eventually becomes available,
// a blocked Lock call excludes new readers from acquiring
// the lock.
//
// Unless deadlock detection is disabled, logs potential deadlocks to Opts.LogBuf,
// calling Opts.OnPotentialDeadlock on each occasion.
func (m *RWMutex) Lock() {
lock(m.mu.Lock, m)
}
// Unlock unlocks the mutex for writing. It is a run-time error if rw is
// not locked for writing on entry to Unlock.
//
// As with Mutexes, a locked RWMutex is not associated with a particular
// goroutine. One goroutine may RLock (Lock) an RWMutex and then
// arrange for another goroutine to RUnlock (Unlock) it.
func (m *RWMutex) Unlock() {
m.mu.Unlock()
if !Opts.Disable {
postUnlock(m)
}
}
// RLock locks the mutex for reading.
//
// Unless deadlock detection is disabled, logs potential deadlocks to Opts.LogBuf,
// calling Opts.OnPotentialDeadlock on each occasion.
func (m *RWMutex) RLock() {
lock(m.mu.RLock, m)
}
// RUnlock undoes a single RLock call;
// it does not affect other simultaneous readers.
// It is a run-time error if rw is not locked for reading
// on entry to RUnlock.
func (m *RWMutex) RUnlock() {
m.mu.RUnlock()
if !Opts.Disable {
postUnlock(m)
}
}
// RLocker returns a Locker interface that implements
// the Lock and Unlock methods by calling RLock and RUnlock.
func (m *RWMutex) RLocker() sync.Locker {
return (*rlocker)(m)
}
func preLock(skip int, p interface{}) {
lo.preLock(skip, p)
}
func postLock(skip int, p interface{}) {
lo.postLock(skip, p)
}
func postUnlock(p interface{}) {
lo.postUnlock(p)
}
func lock(lockFn func(), ptr interface{}) {
if Opts.Disable {
lockFn()
return
}
preLock(4, ptr)
if Opts.DeadlockTimeout <= 0 {
lockFn()
} else {
ch := make(chan struct{})
go func() {
for {
t := time.NewTimer(Opts.DeadlockTimeout)
defer t.Stop() // This runs after the losure finishes, but it's OK.
select {
case <-t.C:
lo.mu.Lock()
prev, ok := lo.cur[ptr]
if !ok {
lo.mu.Unlock()
break // Nobody seems to be holding the lock, try again.
}
Opts.mu.Lock()
fmt.Fprintln(Opts.LogBuf, header)
fmt.Fprintln(Opts.LogBuf, "Previous place where the lock was grabbed")
fmt.Fprintf(Opts.LogBuf, "goroutine %v lock %p\n", prev.gid, ptr)
printStack(Opts.LogBuf, prev.stack)
fmt.Fprintln(Opts.LogBuf, "Have been trying to lock it again for more than", Opts.DeadlockTimeout)
fmt.Fprintf(Opts.LogBuf, "goroutine %v lock %p\n", goid.Get(), ptr)
printStack(Opts.LogBuf, callers(2))
stacks := stacks()
grs := bytes.Split(stacks, []byte("\n\n"))
for _, g := range grs {
if goid.ExtractGID(g) == prev.gid {
fmt.Fprintln(Opts.LogBuf, "Here is what goroutine", prev.gid, "doing now")
Opts.LogBuf.Write(g)
fmt.Fprintln(Opts.LogBuf)
}
}
lo.other(ptr)
if Opts.PrintAllCurrentGoroutines {
fmt.Fprintln(Opts.LogBuf, "All current goroutines:")
Opts.LogBuf.Write(stacks)
}
fmt.Fprintln(Opts.LogBuf)
if buf, ok := Opts.LogBuf.(*bufio.Writer); ok {
buf.Flush()
}
Opts.mu.Unlock()
lo.mu.Unlock()
Opts.OnPotentialDeadlock()
<-ch
return
case <-ch:
return
}
}
}()
lockFn()
postLock(4, ptr)
close(ch)
return
}
postLock(4, ptr)
}
type lockOrder struct {
mu sync.Mutex
cur map[interface{}]stackGID // stacktraces + gids for the locks currently taken.
order map[beforeAfter]ss // expected order of locks.
}
type stackGID struct {
stack []uintptr
gid int64
}
type beforeAfter struct {
before interface{}
after interface{}
}
type ss struct {
before []uintptr
after []uintptr
}
var lo = newLockOrder()
func newLockOrder() *lockOrder {
return &lockOrder{
cur: map[interface{}]stackGID{},
order: map[beforeAfter]ss{},
}
}
func (l *lockOrder) postLock(skip int, p interface{}) {
stack := callers(skip)
gid := goid.Get()
l.mu.Lock()
l.cur[p] = stackGID{stack, gid}
l.mu.Unlock()
}
func (l *lockOrder) preLock(skip int, p interface{}) {
if Opts.DisableLockOrderDetection {
return
}
stack := callers(skip)
gid := goid.Get()
l.mu.Lock()
for b, bs := range l.cur {
if b == p {
if bs.gid == gid {
Opts.mu.Lock()
fmt.Fprintln(Opts.LogBuf, header, "Recursive locking:")
fmt.Fprintf(Opts.LogBuf, "current goroutine %d lock %p\n", gid, b)
printStack(Opts.LogBuf, stack)
fmt.Fprintln(Opts.LogBuf, "Previous place where the lock was grabbed (same goroutine)")
printStack(Opts.LogBuf, bs.stack)
l.other(p)
if buf, ok := Opts.LogBuf.(*bufio.Writer); ok {
buf.Flush()
}
Opts.mu.Unlock()
Opts.OnPotentialDeadlock()
}
continue
}
if bs.gid != gid { // We want locks taken in the same goroutine only.
continue
}
if s, ok := l.order[beforeAfter{p, b}]; ok {
Opts.mu.Lock()
fmt.Fprintln(Opts.LogBuf, header, "Inconsistent locking. saw this ordering in one goroutine:")
fmt.Fprintln(Opts.LogBuf, "happened before")
printStack(Opts.LogBuf, s.before)
fmt.Fprintln(Opts.LogBuf, "happened after")
printStack(Opts.LogBuf, s.after)
fmt.Fprintln(Opts.LogBuf, "in another goroutine: happened before")
printStack(Opts.LogBuf, bs.stack)
fmt.Fprintln(Opts.LogBuf, "happened after")
printStack(Opts.LogBuf, stack)
l.other(p)
fmt.Fprintln(Opts.LogBuf)
if buf, ok := Opts.LogBuf.(*bufio.Writer); ok {
buf.Flush()
}
Opts.mu.Unlock()
Opts.OnPotentialDeadlock()
}
l.order[beforeAfter{b, p}] = ss{bs.stack, stack}
if len(l.order) == Opts.MaxMapSize { // Reset the map to keep memory footprint bounded.
l.order = map[beforeAfter]ss{}
}
}
l.mu.Unlock()
}
func (l *lockOrder) postUnlock(p interface{}) {
l.mu.Lock()
delete(l.cur, p)
l.mu.Unlock()
}
type rlocker RWMutex
func (r *rlocker) Lock() { (*RWMutex)(r).RLock() }
func (r *rlocker) Unlock() { (*RWMutex)(r).RUnlock() }
// Under lo.mu Locked.
func (l *lockOrder) other(ptr interface{}) {
empty := true
for k := range l.cur {
if k == ptr {
continue
}
empty = false
}
if empty {
return
}
fmt.Fprintln(Opts.LogBuf, "Other goroutines holding locks:")
for k, pp := range l.cur {
if k == ptr {
continue
}
fmt.Fprintf(Opts.LogBuf, "goroutine %v lock %p\n", pp.gid, k)
printStack(Opts.LogBuf, pp.stack)
}
fmt.Fprintln(Opts.LogBuf)
}
const header = "POTENTIAL DEADLOCK:"
// +build go1.9
package gxsync
// ref: github.com/sasha-s/go-deadlock
import "sync"
// Map is sync.Map wrapper
type Map struct {
sync.Map
}
package gxsync
// ref: github.com/sasha-s/go-deadlock
import (
"log"
"math/rand"
"sync"
"sync/atomic"
"testing"
"time"
)
func TestNoDeadlocks(t *testing.T) {
defer restore()()
Opts.DeadlockTimeout = time.Millisecond * 5000
var a RWMutex
var b Mutex
var c RWMutex
var wg sync.WaitGroup
for i := 0; i < 10; i++ {
wg.Add(1)
go func() {
defer wg.Done()
for k := 0; k < 5; k++ {
func() {
a.Lock()
defer a.Unlock()
func() {
b.Lock()
defer b.Unlock()
func() {
c.RLock()
defer c.RUnlock()
time.Sleep(time.Duration((1000 + rand.Intn(1000))) * time.Millisecond / 200)
}()
}()
}()
}
}()
wg.Add(1)
go func() {
defer wg.Done()
for k := 0; k < 5; k++ {
func() {
a.RLock()
defer a.RUnlock()
func() {
b.Lock()
defer b.Unlock()
func() {
c.Lock()
defer c.Unlock()
time.Sleep(time.Duration((1000 + rand.Intn(1000))) * time.Millisecond / 200)
}()
}()
}()
}
}()
}
wg.Wait()
}
func TestLockOrder(t *testing.T) {
defer restore()()
Opts.DeadlockTimeout = 0
var deadlocks uint32
Opts.OnPotentialDeadlock = func() {
atomic.AddUint32(&deadlocks, 1)
}
var a RWMutex
var b Mutex
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
a.Lock()
b.Lock()
b.Unlock()
a.Unlock()
}()
wg.Wait()
wg.Add(1)
go func() {
defer wg.Done()
b.Lock()
a.RLock()
a.RUnlock()
b.Unlock()
}()
wg.Wait()
if atomic.LoadUint32(&deadlocks) != 1 {
t.Fatalf("expected 1 deadlock, detected %d", deadlocks)
}
}
func TestHardDeadlock(t *testing.T) {
defer restore()()
Opts.DisableLockOrderDetection = true
Opts.DeadlockTimeout = time.Millisecond * 20
var deadlocks uint32
Opts.OnPotentialDeadlock = func() {
atomic.AddUint32(&deadlocks, 1)
}
var mu Mutex
mu.Lock()
ch := make(chan struct{})
go func() {
defer close(ch)
mu.Lock()
defer mu.Unlock()
}()
select {
case <-ch:
case <-time.After(time.Millisecond * 100):
}
if atomic.LoadUint32(&deadlocks) != 1 {
t.Fatalf("expected 1 deadlock, detected %d", deadlocks)
}
log.Println("****************")
mu.Unlock()
<-ch
}
func TestRWMutex(t *testing.T) {
defer restore()()
Opts.DeadlockTimeout = time.Millisecond * 20
var deadlocks uint32
Opts.OnPotentialDeadlock = func() {
atomic.AddUint32(&deadlocks, 1)
}
var a RWMutex
a.RLock()
go func() {
// We detect a potential deadlock here.
a.Lock()
defer a.Unlock()
}()
time.Sleep(time.Millisecond * 100) // We want the Lock call to happen.
ch := make(chan struct{})
go func() {
// We detect a potential deadlock here.
defer close(ch)
a.RLock()
defer a.RUnlock()
}()
select {
case <-ch:
t.Fatal("expected a timeout")
case <-time.After(time.Millisecond * 50):
}
a.RUnlock()
if atomic.LoadUint32(&deadlocks) != 2 {
t.Fatalf("expected 2 deadlocks, detected %d", deadlocks)
}
<-ch
}
func restore() func() {
opts := Opts
return func() {
Opts = opts
}
}
func TestLockDuplicate(t *testing.T) {
defer restore()()
Opts.DeadlockTimeout = 0
var deadlocks uint32
Opts.OnPotentialDeadlock = func() {
atomic.AddUint32(&deadlocks, 1)
}
var a RWMutex
var b Mutex
go func() {
a.RLock()
a.Lock()
a.RUnlock()
a.Unlock()
}()
go func() {
b.Lock()
b.Lock()
b.Unlock()
b.Unlock()
}()
time.Sleep(time.Second * 1)
if atomic.LoadUint32(&deadlocks) != 2 {
t.Fatalf("expected 2 deadlocks, detected %d", deadlocks)
}
}
package gxsync
// ref: github.com/sasha-s/go-deadlock
func EnableDeadlock(enable bool) {
Opts.Disable = true
Opts.DisableLockOrderDetection = true
if enable {
Opts.Disable = false
Opts.DisableLockOrderDetection = false
}
}
package gxsync
// ref: github.com/sasha-s/go-deadlock
import (
"bytes"
"fmt"
"io"
"io/ioutil"
"os"
"os/user"
"path/filepath"
"runtime"
"strings"
"sync"
)
func callers(skip int) []uintptr {
s := make([]uintptr, 50) // Most relevant context seem to appear near the top of the stack.
return s[:runtime.Callers(2+skip, s)]
}
func printStack(w io.Writer, stack []uintptr) {
home := os.Getenv("HOME")
usr, err := user.Current()
if err == nil {
home = usr.HomeDir
}
cwd, _ := os.Getwd()
for i, pc := range stack {
f := runtime.FuncForPC(pc)
name := f.Name()
pkg := ""
if pos := strings.LastIndex(name, "/"); pos >= 0 {
name = name[pos+1:]
}
if pos := strings.Index(name, "."); pos >= 0 {
pkg = name[:pos]
name = name[pos+1:]
}
file, line := f.FileLine(pc - 1)
if (pkg == "runtime" && name == "goexit") || (pkg == "testing" && name == "tRunner") {
fmt.Fprintln(w)
return
}
tail := ""
if i == 0 {
tail = " <<<<<" // Make the line performing a lock prominent.
}
// Shorten the file name.
clean := file
if cwd != "" {
cl, err := filepath.Rel(cwd, file)
if err == nil {
clean = cl
}
}
if home != "" {
s2 := strings.Replace(file, home, "~", 1)
if len(clean) > len(s2) {
clean = s2
}
}
fmt.Fprintf(w, "%s:%d %s.%s %s%s\n", clean, line, pkg, name, code(file, line), tail)
}
fmt.Fprintln(w)
}
var fileSources struct {
sync.Mutex
lines map[string][][]byte
}
// Reads souce file lines from disk if not cached already.
func getSourceLines(file string) [][]byte {
fileSources.Lock()
defer fileSources.Unlock()
if fileSources.lines == nil {
fileSources.lines = map[string][][]byte{}
}
if lines, ok := fileSources.lines[file]; ok {
return lines
}
text, _ := ioutil.ReadFile(file)
fileSources.lines[file] = bytes.Split(text, []byte{'\n'})
return fileSources.lines[file]
}
func code(file string, line int) string {
lines := getSourceLines(file)
// lines are 1 based.
if line >= len(lines) || line <= 0 {
return "???"
}
return "{ " + string(bytes.TrimSpace(lines[line-1])) + " }"
}
// Stacktraces for all goroutines.
func stacks() []byte {
buf := make([]byte, 1024*16)
for {
n := runtime.Stack(buf, true)
if n < len(buf) {
return buf[:n]
}
buf = make([]byte, 2*len(buf))
}
}
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package gxsync
import (
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment